Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Exponential times in the one-dimensional Gross-Pitaevskii equation with multiple well potential

Articolo
Data di Pubblicazione:
2007
Citazione:
Exponential times in the one-dimensional Gross-Pitaevskii equation with multiple well potential / D. Bambusi, A. Sacchetti. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 275:1(2007 Oct), pp. 1-36.
Abstract:
We consider the Gross-Pitaevskii equation in 1 space dimension with a N-well trapping potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest N eigenvalues of the linear operator is slightly deformed by the nonlinear term into an almost invariant manifold script M sign . Precisely, one has that solutions starting on script M sign , or close to it, will remain close to script M sign for times exponentially long with the inverse of the size of the nonlinearity. As heuristically expected the effective equation on script M sign is a perturbation of a discrete nonlinear Schrödinger equation. We deduce that when the size of the nonlinearity is large enough then tunneling among the wells essentially disappears: that is for almost all solutions starting close to script M sign their restriction to each of the wells has norm approximatively constant over the considered time scale. In the particular case of a double well potential we give a more precise result showing persistence or destruction of the beating motions over exponentially long times. The proof is based on canonical perturbation theory; surprisingly enough, due to the Gauge invariance of the system, no non-resonance condition is required.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
D. Bambusi, A. Sacchetti
Autori di Ateneo:
BAMBUSI DARIO PAOLO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/36869
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0