Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Fractional Perimeters from a Fractal Perspective

Articolo
Data di Pubblicazione:
2018
Citazione:
Fractional Perimeters from a Fractal Perspective / L. Lombardini. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - (2018 Jun 13). [Epub ahead of print]
Abstract:
The purpose of this paper consists in a better understanding of the fractional nature of the nonlocal perimeters introduced in [L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 2010, 9, 1111-1144]. Following [A. Visintin, Generalized coarea formula and fractal sets, Japan J. Indust. Appl. Math. 8 1991, 2, 175-201], we exploit these fractional perimeters to introduce a definition of fractal dimension for the measure theoretic boundary of a set. We calculate the fractal dimension of sets which can be defined in a recursive way, and we give some examples of this kind of sets, explaining how to construct them starting from well-known self-similar fractals. In particular, we show that in the case of the von Koch snowflake S ⊆ ℝ2 this fractal dimension coincides with the Minkowski dimension. We also obtain an optimal result for the asymptotics as s → 1 - of the fractional perimeter of a set having locally finite (classical) perimeter.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
L. Lombardini
Link alla scheda completa:
https://air.unimi.it/handle/2434/609150
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0