Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Large KAM tori for perturbations of the defocusing NLS equation

Articolo
Data di Pubblicazione:
2018
Citazione:
Large KAM tori for perturbations of the defocusing NLS equation / M. Berti, T. Kappeler, R. Montalto. - In: ASTÉRISQUE. - ISSN 0303-1179. - 403(2018), pp. 1-160.
Abstract:
We prove that small, semi-linear Hamiltonian perturbations of the defocusing nonlinear Schrödinger (dNLS) equation on the circle have an abundance of invariant tori of any size and (finite) dimension which support quasi-periodic solutions. When compared with previous results the novelty consists in considering perturbations which do not satisfy any symmetry condition (they may depend on x in an arbitrary way) and need not be analytic. The main difficulty is posed by pairs of almost resonant dNLS frequencies. The proof is based on the integrability of the dNLS equation, in particular the fact that the nonlinear part of the Birkhoff coordinates is one smoothing. We implement a Newton-Nash-Moser iteration scheme to construct the invariant tori. The key point is the reduction of linearized operators, coming up in the iteration scheme, to 2 2 block diagonal ones with constant coefficients together with sharp asymptotic estimates of their eigenvalues
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M. Berti, T. Kappeler, R. Montalto
Autori di Ateneo:
MONTALTO RICCARDO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/607460
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/607460/1156966/2434_607460.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/05 - Analisi Matematica

Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0