Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A Reducibility Result for a Class of Linear Wave Equations on T-d

Articolo
Data di Pubblicazione:
2019
Citazione:
A Reducibility Result for a Class of Linear Wave Equations on T-d / R. Montalto. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - :6(2019), pp. 1788-1862.
Abstract:
We prove a reducibility result for a class of quasi-periodically forced linear wave equations on the d-dimensional torus Td of the form ∂ttv − v + εP(ωt)[v] = 0, where the perturbation P(ωt) is a second order operator of the form P(ωt) = −a(ωt) − R(ωt), the frequency ω ∈ Rν is in some Borel set of large Lebesgue measure, the function a : Tν → R (independent of the space variable) is sufficiently smooth and R(ωt) is a time-dependent finite rank operator. This is the first reducibility result for linear wave equations with unbounded perturbations on the higher dimensional torus Td. As a corollary, we get that the linearized Kirchhoff equation at a smooth and sufficiently small quasi-periodic function is reducible.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Quasi-periodic solutions; unboun perturbations; global solvability; Kirchhoff equation; kam tori; theorem; NLS
Elenco autori:
R. Montalto
Autori di Ateneo:
MONTALTO RICCARDO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/607447
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/607447/1153867/2434:607447.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/05 - Analisi Matematica

Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0