Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Quasi-optimal nonconforming methods for symmetric elliptic problems. III-discontinuous Galerkin and other interior penalty methods

Articolo
Data di Pubblicazione:
2018
Citazione:
Quasi-optimal nonconforming methods for symmetric elliptic problems. III-discontinuous Galerkin and other interior penalty methods / A. Veeser, P. Zanotti. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 56:5(2018), pp. 2871-2894. [10.1137/17M1151675]
Abstract:
We devise new variants of the following nonconforming finite element methods: discontinuous Galerkin methods of fixed arbitrary order for the Poisson problem, the Crouzeix-Raviart interior penalty method for linear elasticity, and the quadratic C0 interior penalty method for the biharmonic problem. Each variant differs from the original method only in the discretization of the right-hand side. Before applying the load functional, a linear operator transforms nonconforming discrete test functions into conforming functions such that stability and consistency are improved. The new variants are thus quasi-optimal with respect to an extension of the energy norm. Furthermore, their quasi-optimality constants are uniformly bounded for shape regular meshes and tend to 1 as the penalty parameter increases.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
C0 interior penalty methods; Crouzeix-Raviart element; Discontinuous elements; Linear elasticity; Quasi-optimality; Numerical Analysis; Computational Mathematics; Applied Mathematics
Elenco autori:
A. Veeser, P. Zanotti
Autori di Ateneo:
VEESER ANDREAS ( autore )
ZANOTTI PIETRO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/604844
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/604844/1113183/SiamJNumerAnalVol56N5Pp2871-2894.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0