Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On approximate solutions of semilinear evolution equations

Articolo
Data di Pubblicazione:
2004
Citazione:
On approximate solutions of semilinear evolution equations / C. Morosi, L. Pizzocchero. - In: REVIEWS IN MATHEMATICAL PHYSICS. - ISSN 0129-055X. - 16:3(2004), pp. 383-420.
Abstract:
A general framework is presented to discuss the approximate solutions of an evolution equation in a Banach space, with a linear part generating a semigroup and a sufficiently smooth nonlinear part. A theorem is presented, allowing to infer from an approximate solution the existence of an exact solution. According to this theorem, the interval of existence of the exact solution and the distance of the latter from the approximate solution can be evaluated solving a one-dimensional "control" integral equation, where the unknown gives a bound on the previous distance as a function of time. For example, the control equation can be applied to the approximation methods based on the reduction of the evolution equation to finite-dimensional manifolds: among them, the Galerkin method is discussed in detail. To illustrate this framework, the nonlinear heat equation is considered. In this case the control equation is used to evaluate the error of the Galerkin approximation; depending on the initial datum, this approach either grants global existence of the solution or gives fairly accurate bounds on the blow up time.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Blow up; Differential equations; Nonlinear heat equation; Theoretical approximation
Elenco autori:
C. Morosi, L. Pizzocchero
Autori di Ateneo:
PIZZOCCHERO LIVIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/27389
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0