Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Birkhoff normal form for some nonlinear PDEs

Articolo
Data di Pubblicazione:
2003
Citazione:
Birkhoff normal form for some nonlinear PDEs / Dario Bambusi. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 234:2(2003), pp. 253-285..
Abstract:
We consider the problem of extending to PDEs Birkhoff normal form theorem on Hamiltonian systems close to nonresonant elliptic equilibria. As a model problem we take the nonlinear wave equation utt-uxx+g(x,u)=0, 0.1 with Dirichlet boundary conditions on [0,?]; g is an analytic skewsymmetric function which vanishes for u=0 and is periodic with period 2? in the x variable. We prove, under a nonresonance condition which is fulfilled for most g's, that for any integer M there exists a canonical transformation that puts the Hamiltonian in Birkhoff normal form up to a reminder of order M. The canonical transformation is well defined in a neighbourhood of the origin of a Sobolev type phase space of sufficiently high order. Some dynamical consequences are obtained. The technique of proof is applicable to quite general semilinear equations in one space dimension.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
Dario Bambusi
Autori di Ateneo:
BAMBUSI DARIO PAOLO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/28318
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0