Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Forme normale pour NLS en dimension quelconque.

Articolo
Data di Pubblicazione:
2003
Citazione:
Forme normale pour NLS en dimension quelconque / Dario Bambusi, Benoît Grébert. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 337:6(2003), pp. 409-414..
Abstract:
We consider the nonlinear Schödinger equation with periodic boundary conditions on [−π,π]d, d1; g is analytic and g(0,0)=Dg(0,0)=0; V is a potential in L2. Under a nonresonance condition which is fulfilled for most Vs we prove that, for any integer M there exists a canonical transformation that puts the Hamiltonian in Birkhoff normal form up to a reminder of order M. The canonical tranformation is well defined in a neighbourhood of the origin of any Sobolev space of sufficiently high order. From the dynamical point of view this means in particular that if the initial data is smaller than , the solution remains smaller than 2 for all times t smaller than −(M−1). Moreover, for the same times, the solution is close to an infinite dimensional torus
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
Dario Bambusi, Benoît Grébert
Autori di Ateneo:
BAMBUSI DARIO PAOLO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/28406
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0