Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Strange distributionally chaotic triangular maps III

Articolo
Data di Pubblicazione:
2008
Citazione:
Strange distributionally chaotic triangular maps III / L. Paganoni, J. Smital. - In: CHAOS, SOLITONS AND FRACTALS. - ISSN 0960-0779. - 37:2(2008), pp. 517-524.
Abstract:
In the class of triangular maps of the square we consider the strongest notion of distributional chaos, DC1, originally introduced by Schweizer and Smítal [Trans Amer Math Soc 1994;344:737–854] for continuous maps of the interval. We show that a map is DC1 if F has a periodic orbit with period ≠ 2n, for any n 0. Consequently, a map in is DC1 if it has a homoclinic trajectory. This result is important since in general systems like , positive topological entropy itself does not imply DC1. It contributes to the solution of a long-standing open problem of A. N. Sharkovsky concerning classification of triangular maps of the square.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Triangular maps; Distributional chaos; Homoclinic trajectory
Elenco autori:
L. Paganoni, J. Smital
Link alla scheda completa:
https://air.unimi.it/handle/2434/27522
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/27522/66201/Strange%20distributionally%20triangular%20maps%20III.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0