Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Continuity properties of Neumann-to-Dirichlet maps with respect to the H-convergence of the coefficient matrices

Articolo
Data di Pubblicazione:
2015
Citazione:
Continuity properties of Neumann-to-Dirichlet maps with respect to the H-convergence of the coefficient matrices / L. Rondi. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - 31:4(2015), pp. 045002.1-045002.24. [10.1088/0266-5611/31/4/045002]
Abstract:
We investigate the continuity of boundary operators, such as the Neumann-to-Dirichlet map, with respect to the coefficient matrices of the underlying elliptic equations. We show that for nonsmooth coefficients the correct notion of convergence is the one provided by H-convergence (or G-convergence for symmetric matrices). We prove existence results for minimum problems associated to variational methods used to solve the so-called inverse conductivity problem, at least if we allow the conductivities to be anisotropic. In the case of isotropic conductivities we show that on certain occasions existence of a minimizer may fail.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
H-convergence; G-convergence; inverse conductivity problem
Elenco autori:
L. Rondi
Link alla scheda completa:
https://air.unimi.it/handle/2434/597749
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/597749/1092022/ip15-pp.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0