Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A Friedrichs-Maz'ya inequality for functions of bounded variation

Articolo
Data di Pubblicazione:
2017
Citazione:
A Friedrichs-Maz'ya inequality for functions of bounded variation / L. Rondi. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 290:11-12(2017 Aug), pp. 1830-1839. [10.1002/mana.201600004]
Abstract:
The aim of this short note is to give an alternative proof, which applies to functions of bounded variation in arbitrary domains, of an inequality by Maz'ya that improves Friedrichs inequality. A remarkable feature of such a proof is that it is rather elementary, if the basic background in the theory of functions of bounded variation is assumed. Nevertheless, it allows to extend all the previously known versions of this fundamental inequality to a completely general version. In fact the inequality presented here is optimal in several respects. As already observed in previous proofs, the crucial step is to provide conditions under which a function of bounded variation on a bounded open set, extended to zero outside, has bounded variation on the whole space. We push such conditions to their limits. In fact, we give a sufficient and necessary condition if the open set has a boundary with sigma-finite surface measure and a sufficient condition if the open set is fully arbitrary. Via a counterexample we show that such a general sufficient condition is sharp.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
functions of bounded variation; Friedrichs inequality; extension; trace
Elenco autori:
L. Rondi
Link alla scheda completa:
https://air.unimi.it/handle/2434/597710
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0