Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Ruitenburg's Theorem via Duality and Bounded Bisimulations

Capitolo di libro
Data di Pubblicazione:
2018
Citazione:
Ruitenburg's Theorem via Duality and Bounded Bisimulations / S. Ghilardi, L. Santocanale - In: Advances in Modal Logic / [a cura di] G. Bezhanishviii, G. D'Agostino, G. Metcalfe, T. Studer. - [s.l] : College Publications, 2018. - ISBN 9781848902558. - pp. 277-290
Abstract:
For a given intuitionistic propositional formula A and a propositional variable x occurring in it, define the infinite sequence of formulae { A i }i≥1 by letting A 1 be A and A i+1 be A(A i /x). Ruitenburg’s Theorem [8] says that the sequence { A i }i≥1 (modulo logical equivalence) is ultimately periodic with period 2, i.e. there is N ≥ 0 such that A N+2 ↔ A N is provable in intuitionistic propositional calculus. We give a semantic proof of this theorem, using duality techniques and bounded bisimulations ranks.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Ruitenburg’s Theorem; Sheaf Duality; Bounded Bisimulations
Elenco autori:
S. Ghilardi, L. Santocanale
Autori di Ateneo:
GHILARDI SILVIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/587094
Titolo del libro:
Advances in Modal Logic
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/01 - Logica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0