Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel

Articolo
Data di Pubblicazione:
2018
Citazione:
Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel / C. Gross, A. Saponaro, B. Santoro, A. Moroni, G. Thiel, K. Hamacher. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 293:33(2018 Aug 17), pp. 12908-12918.
Abstract:
Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels play a critical role in the control of pacemaking in the heart and repetitive firing in neurons. In HCN channels, the intracellular cyclic nucleotide-binding domain (CNBD) is connected to the transmembrane portion of the channel (TMPC) through a helical domain, the C-linker. Although this domain is critical for mechanical signal transduction, the conformational dynamics in the C-linker that transmit the nucleotide-binding signal to the HCN channel pore are unknown. Here, we use linear response theory to analyze conformational changes in the C-linker of the human HCN1 protein, which couple cAMP binding in the CNBD with gating in the TMPC. By applying a force to the tip of the so-called "elbow" of the C-linker, the coarse-grained calculations recapitulate the same conformational changes triggered by cAMP binding in experimental studies. Furthermore, in our simulations, a displacement of the C-linker parallel to the membrane plane (i.e. horizontally) induced a rotational movement resulting in a distinct tilting of the transmembrane helices. This movement, in turn, increased the distance between the voltage-sensing S4 domain and the surrounding transmembrane domains and led to a widening of the intracellular channel gate. In conclusion, our computational approach, combined with experimental data, thus provides a more detailed understanding of how cAMP binding is mechanically coupled over long distances to promote voltage-dependent opening of HCN channels.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
HCN1 channel; anisotropic network model; cAMP dependent gating; computational biology; cyclic AMP (cAMP); linear response theory; potassium channel; protein conformation; protein dynamic
Elenco autori:
C. Gross, A. Saponaro, B. Santoro, A. Moroni, G. Thiel, K. Hamacher
Autori di Ateneo:
MORONI ANNA ( autore )
SAPONARO ANDREA COSIMO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/585383
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/585383/1092312/12908.full.pdf
Progetto:
Noninvasive Manipulation of Gating in Ion Channels
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore BIO/04 - Fisiologia Vegetale

Settore BIO/09 - Fisiologia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.12.4.0