Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments

Articolo
Data di Pubblicazione:
2017
Citazione:
Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments / T. Hasegawa, T. Li, X. Yin, Y. Zhu, K. Boote, J. Baker, S. Bregaglio, S. Buis, R. Confalonieri, J. Fugice, T. Fumoto, D. Gaydon, S. Naresh Kumar, T. Lafarge, M. Marcaida III, Y. Masutomi, H. Nakagawa, P. Oriol, F. Ruget, U. Singh, L. Tang, F. Tao, H. Wakatsuki, D. Wallach, Y. Wang, L. Ted Wilson, L. Yang, Y. Yang, H. Yoshida, Z. Zhang, J. Zhu. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 7(2017 Nov 01). [10.1038/s41598-017-13582-y]
Abstract:
The CO2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO2] (E-[CO2]) by comparison to free-air CO2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO2] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO2] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO2] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO2] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO2] × N interactions is necessary to better evaluate management practices under climate change.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
T. Hasegawa, T. Li, X. Yin, Y. Zhu, K. Boote, J. Baker, S. Bregaglio, S. Buis, R. Confalonieri, J. Fugice, T. Fumoto, D. Gaydon, S. Naresh Kumar, T. Lafarge, M. Marcaida III, Y. Masutomi, H. Nakagawa, P. Oriol, F. Ruget, U. Singh, L. Tang, F. Tao, H. Wakatsuki, D. Wallach, Y. Wang, L. Ted Wilson, L. Yang, Y. Yang, H. Yoshida, Z. Zhang, J. Zhu
Autori di Ateneo:
CONFALONIERI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/568016
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/568016/1008411/2017%20Hasegawa%20et%20al.%20-%20AgMIP%20CO2.pdf
Progetto:
MODelling vegetation response to EXTREMe Events
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore AGR/02 - Agronomia e Coltivazioni Erbacee
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0