Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Building Rothermel fire behaviour fuel models by genetic algorithm optimisation

Articolo
Data di Pubblicazione:
2015
Citazione:
Building Rothermel fire behaviour fuel models by genetic algorithm optimisation / D. Ascoli, G. Vacchiano, R. Motta, G. Bovio. - In: THE INTERNATIONAL JOURNAL OF WILDLAND FIRE. - ISSN 1049-8001. - 24:3(2015), pp. 317-328. [10.1071/WF14097]
Abstract:
A method to build and calibrate custom fuel models was developed by linking genetic algorithms (GA) to the Rothermel fire spread model. GA randomly generates solutions of fuel model parameters to form an initial population. Solutions are validated against observations of fire rate of spread via a goodness-of-fit metric. The population is selected for its best members, crossed over and mutated within a range of model parameter values, until a satisfactory fitness is reached. We showed that GA improved the performance of the Rothermel model in three published custom fuel models for litter, grass and shrub fuels (root mean square error decreased by 39, 19 and 26%). We applied GA to calibrate a mixed grass-shrub fuel model, using fuel and fire behaviour data from fire experiments in dry heathlands of Southern Europe. The new model had significantly lower prediction error against a validation dataset than either standard or custom fuel models built using average values of inventoried fuels, and predictions of the Fuel Characteristics Classification System. GA proved a useful tool to calibrate fuel models and improve Rothermel model predictions. GA allows exploration of a continuous space of fuel parameters, making fuel model calibration computational effective and easily reproducible, and does not require fuel sampling. We suggest GA as a viable method to calibrate custom fuel models in fire modelling systems based on the Rothermel model.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Fuel Characteristics Classification System; prescribed burning; Rothermel package for R; wildfire; Forestry; Ecology
Elenco autori:
D. Ascoli, G. Vacchiano, R. Motta, G. Bovio
Autori di Ateneo:
VACCHIANO GIORGIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/564350
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore AGR/05 - Assestamento Forestale e Selvicoltura
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0