Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime

Articolo
Data di Pubblicazione:
2018
Citazione:
A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime / S. Dipierro, A. Farina, E. Valdinoci. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 57:1(2018 Feb). [10.1007/s00526-017-1295-5]
Abstract:
We consider bounded solutions of the nonlocal Allen–Cahn equation (−Δ) s u=u−u 3 in R 3 , (−Δ)su=u−u3 in R3, under the monotonicity condition ∂ x 3 u>0 ∂x3u>0 and in the genuinely nonlocal regime in which s∈(0,12 ) s∈(0,12). Under the limit assumptions lim x n →−∞ u(x ′ ,x n )=−1 and lim x n →+∞ u(x ′ ,x n )=1, limxn→−∞u(x′,xn)=−1 and limxn→+∞u(x′,xn)=1, it has been recently shown in Dipierro et al. (Improvement of flatness for nonlocal phase transitions, 2016) that u is necessarily 1D, i.e. it depends only on one Euclidean variable. The goal of this paper is to obtain a similar result without assuming such limit conditions. This type of results can be seen as nonlocal counterparts of the celebrated conjecture formulated by De Giorgi (Proceedings of the international meeting on recent methods in nonlinear analysis (Rome, 1978), Pitagora, Bologna, pp 131–188, 1979).
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
35B65; 35R11; 82B26; analysis; applied mathematics
Elenco autori:
S. Dipierro, A. Farina, E. Valdinoci
Link alla scheda completa:
https://air.unimi.it/handle/2434/549530
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0