Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On locally essentially bounded divergence measure fields and sets of locally finite perimeter

Articolo
Data di Pubblicazione:
2020
Citazione:
On locally essentially bounded divergence measure fields and sets of locally finite perimeter / C. Giovanni E., K.R. Payne. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 13:2(2020), pp. 179-217. [10.1515/acv-2017-0001]
Abstract:
Chen, Torres and Ziemer ([9], 2009) proved the validity of generalized Gauss-Green formulas and obtained the existence of interior and exterior normal traces for essentially bounded divergence measure fields on sets of finite perimeter using an approximation theory through sets with a smooth boundary. However, it is known that the proof of a crucial approximation lemma contained a gap. Taking inspiration from a previous work of Chen and Torres ([7], 2005) and exploiting ideas of Vol'pert ([29], 1985) for essentially bounded fields with components of bounded variation, we present here a direct proof of generalized Gauss-Green formulas for essentially bounded divergence measure fields on sets of finite perimeter which includes the existence and essential boundedness of the normal traces. Our approach appears to be simpler since it does not require any special approximation theory for the domains and it relies only on the Leibniz rule for divergence measure fields. This freedom allows one to localize the constructions and to derive more general statements in a natural way.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Divergence measure fields; extension and gluing theorems; generalized Gauss-Green theorems; normal traces; sets of finite perimeter; Analysis; Applied Mathematics
Elenco autori:
C. Giovanni E., K.R. Payne
Autori di Ateneo:
PAYNE KEVIN RAY ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/545089
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/545089/1937714/10.1515_acv-2017-0001.pdf
https://air.unimi.it/retrieve/handle/2434/545089/947621/Comi_Payne_Final_Version_7dec.pdf
https://air.unimi.it/retrieve/handle/2434/545089/987274/[Advances%20in%20Calculus%20of%20Variations]%20On%20locally%20essentially%20bounded%20divergence%20measure%20fields%20and%20sets%20of%20locally%20finite%20perimeter.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0