Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Tarski's theorem on intuitionistic logic, for polyhedra

Articolo
Data di Pubblicazione:
2017
Citazione:
Tarski's theorem on intuitionistic logic, for polyhedra / B. Nick, V. Marra, D. Mcneill, A. Pedrini. - In: ANNALS OF PURE AND APPLIED LOGIC. - ISSN 0168-0072. - (2017). [Epub ahead of print] [10.1016/j.apal.2017.12.005]
Abstract:
In 1938, Tarski proved that a formula is not intuitionistically valid if, and only if, it has a counter-model in the Heyting algebra of open sets of some topological space. In fact, Tarski showed that any Euclidean space R^n with n>=1 suffices, as does e.g. the Cantor space. In particular, intuitionistic logic cannot detect topological dimension in the Heyting algebra of all open sets of a Euclidean space. By contrast, we consider the lattice of open subpolyhedra of a given compact polyhedron P in R^n, prove that it is a locally finite Heyting subalgebra of the (non-locally-finite) algebra of all open sets of P, and show that intuitionistic logic is able to capture the topological dimension of P through the bounded-depth axiom schemata. Further, we show that intuitionistic logic is precisely the logic of formulae valid in all Heyting algebras arising from polyhedra in this manner. Thus, our main theorem reconciles through polyhedral geometry two classical results: topological completeness in the style of Tarski, and Jas›kowski's theorem that intuitionistic logic enjoys the finite model property. Several questions of interest remain open. E.g., what is the intermediate logic of all closed triangulable manifolds?
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Heyting algebra; Intuitionistic logic; PL topology; Polyhedron; Primary; Secondary; Topological semantics; Triangulation; Logic
Elenco autori:
B. Nick, V. Marra, D. Mcneill, A. Pedrini
Autori di Ateneo:
MARRA VINCENZO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/544186
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/544186/945026/Bezhanishvili_Marra_McNeill_Pedrini_revised.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore MAT/01 - Logica Matematica

Settore MAT/02 - Algebra

Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0