Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the character degree graph of solvable groups

Articolo
Data di Pubblicazione:
2018
Citazione:
On the character degree graph of solvable groups / A. Zeinab, C. Carlo, D. Silvio, K. Khatoon, E. Pacifici. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 146:4(2018 Apr), pp. 1505-1513. [10.1090/proc/13879]
Abstract:
Let G be a finite solvable group, and let ∆(G) denote the prime graph built on the set of degrees of the irreducible complex characters of G. A fundamental result by P. P. Pálfy asserts that the complement ∆(G) of the graph ∆(G) does not contain any cycle of length 3. In this paper we generalize Pálfy’s result, showing that ∆(G) does not contain any cycle of odd length, whence it is a bipartite graph. As an immediate consequence, the set of vertices of ∆(G) can be covered by two subsets, each inducing a complete subgraph. The latter property yields in turn that if n is the clique number of ∆(G), then ∆(G) has at most 2n vertices. This confirms a conjecture by Z. Akhlaghi and H. P. Tong-Viet, and provides some evidence for the famous ρ-σ conjecture by B. Huppert.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
A. Zeinab, C. Carlo, D. Silvio, K. Khatoon, E. Pacifici
Link alla scheda completa:
https://air.unimi.it/handle/2434/529983
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/529983/920979/BipartiteComplement_revised.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/02 - Algebra
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0