Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Selection of artificial neural network models for survival analysis with genetic algorithms

Articolo
Data di Pubblicazione:
2007
Citazione:
Selection of artificial neural network models for survival analysis with genetic algorithms / F. Ambrogi, N. Lama, P. Boracchi, E.M. Biganzoli. - In: COMPUTATIONAL STATISTICS & DATA ANALYSIS. - ISSN 0167-9473. - 52:1(2007 Sep 15), pp. 30-42.
Abstract:
In follow-up clinical studies, the main time end-point is the failure from a specific starting point (e.g. treatment, surgery). A deeper investigation concerns the causes of failure. Statistical analysis typically focuses on the study of the cause specific hazard functions of possibly censored survival data. In the framework of discrete time models and competing risks, a multilayer perceptron was already proposed as an extension of generalized linear models with multinomial errors using a non-linear predictor (PLANNCR). According to standard practice, weight-decay was adopted to modulate model complexity. A Genetic Algorithm is considered for the complexity control of PLANNCR allowing to regularize independently each parameter of the model. The ICOMP information criterion is used as fitness function. To demonstrate the criticality and the benefits of the technique an application to a case series of 1793 women with primary breast cancer without axillary lymph node involvement is presented.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
F. Ambrogi, N. Lama, P. Boracchi, E.M. Biganzoli
Autori di Ateneo:
AMBROGI FEDERICO ( autore )
BIGANZOLI ELIA ( autore )
BORACCHI PATRIZIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/38613
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MED/01 - Statistica Medica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0