Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Fast wide-volume functional imaging of engineered in vitro brain tissues

Articolo
Data di Pubblicazione:
2017
Citazione:
Fast wide-volume functional imaging of engineered in vitro brain tissues / G. Palazzolo, M. Moroni, A. Soloperto, G. Aletti, G. Naldi, M. Vassalli, T. Nieus, F. Difato. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 7:1(2017), pp. 8499.1-8499.20. [10.1038/s41598-017-08979-8]
Abstract:
The need for in vitro models that mimic the human brain to replace animal testing and allow high-throughput screening has driven scientists to develop new tools that reproduce tissue-like features on a chip. Three-dimensional (3D) in vitro cultures are emerging as an unmatched platform that preserves the complexity of cell-to-cell connections within a tissue, improves cell survival, and boosts neuronal differentiation. In this context, new and flexible imaging approaches are required to monitor the functional states of 3D networks. Herein, we propose an experimental model based on 3D neuronal networks in an alginate hydrogel, a tunable wide-volume imaging approach, and an efficient denoising algorithm to resolve, down to single cell resolution, the 3D activity of hundreds of neurons expressing the calcium sensor GCaMP6s. Furthermore, we implemented a 3D co-culture system mimicking the contiguous interfaces of distinct brain tissues such as the cortical-hippocampal interface. The analysis of the network activity of single and layered neuronal co-cultures revealed cell-type-specific activities and an organization of neuronal subpopulations that changed in the two culture configurations. Overall, our experimental platform represents a simple, powerful and cost-effective platform for developing and monitoring living 3D layered brain tissue on chip structures with high resolution and high throughput.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Computational biophysics; Imaging and sensing; Neural circuits; Tissue engineering
Elenco autori:
G. Palazzolo, M. Moroni, A. Soloperto, G. Aletti, G. Naldi, M. Vassalli, T. Nieus, F. Difato
Autori di Ateneo:
ALETTI GIACOMO ( autore )
NALDI GIOVANNI ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/521276
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/521276/896327/s41598-017-08979-8.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (5)


Settore BIO/09 - Fisiologia

Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)

Settore MAT/06 - Probabilita' e Statistica Matematica

Settore MAT/08 - Analisi Numerica

Settore SECS-S/01 - Statistica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0