Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Forecasting in light of Big Data

Articolo
Data di Pubblicazione:
2018
Citazione:
Forecasting in light of Big Data / H. Hosni, A. Vulpiani. - In: PHILOSOPHY & TECHNOLOGY. - ISSN 2210-5433. - 31:4(2018 Dec 01), pp. 557-569. [10.1007/s13347-017-0265-3]
Abstract:
Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on first principles, and the naïve-inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
forecasting; Big data; epistemology
Elenco autori:
H. Hosni, A. Vulpiani
Autori di Ateneo:
HOSNI HYKEL ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/504513
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/504513/853204/HH-AV-big-data-arxiv.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore M-FIL/02 - Logica e Filosofia della Scienza
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0