Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Metainference : a Bayesian inference method for heterogeneous systems

Articolo
Data di Pubblicazione:
2016
Citazione:
Metainference : a Bayesian inference method for heterogeneous systems / M. Bonomi, C. Camilloni, A. Cavalli, M. Vendruscolo. - In: SCIENCE ADVANCES. - ISSN 2375-2548. - 2:1(2016), pp. e1501177.1-e1501177.8. [10.1126/sciadv.1501177]
Abstract:
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
maximum entropy principle; Statistical inference; structural biology; Entropy; Proteins; Bayes Theorem; Models, Theoretical; Medicine (all)
Elenco autori:
M. Bonomi, C. Camilloni, A. Cavalli, M. Vendruscolo
Autori di Ateneo:
CAMILLONI CARLO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/494703
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/494703/831856/e1501177.full.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0