Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Global existence for a contact problem with adhesion

Articolo
Data di Pubblicazione:
2008
Citazione:
Global existence for a contact problem with adhesion / E. Bonetti, G. Bonfanti, R. Rossi. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 31:9(2008), pp. 1029-1064. [10.1002/mma.957]
Abstract:
In this paper, we analyze a contact problem with irreversible adhesion between a viscoelastic body and a rigid support. On the basis of Frémond's theory, we detail the derivation of the model and of the resulting partial differential equation system. Hence, we prove the existence of global in time solutions (to a suitable variational formulation) of the related Cauchy problem by means of an approximation procedure, combined with monotonicity and compactness tools, and with a prolongation argument. In fact the approximate problem (for which we prove a local well-posedness result) models a contact phenomenon in which the occurrence of repulsive dynamics is allowed for. We also show local uniqueness of the solutions, and a continuous dependence result under some additional assumptions.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Adhesion; Contact; Existence; Irreversibility; Uniqueness; Mathematics (all); Applied Mathematics
Elenco autori:
E. Bonetti, G. Bonfanti, R. Rossi
Autori di Ateneo:
BONETTI ELENA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/472090
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0