Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

One-Step Heyting Algebras and Hypersequent Calculi with the Bounded Proof Property

Articolo
Data di Pubblicazione:
2016
Citazione:
One-Step Heyting Algebras and Hypersequent Calculi with the Bounded Proof Property / N. Bezhanishvili, S. Ghilardi, F. Moellestrom Lauridsen. - In: JOURNAL OF LOGIC AND COMPUTATION. - ISSN 0955-792X. - (2016). [Epub ahead of print] [10.1093/logcom/exw029]
Abstract:
We investigate proof-theoretic properties of hypersequent calculi for intermediate logics using algebraic methods. More precisely, we consider a new weakly analytic subformula property (the bounded proof property) of such calculi. Despite being strictly weaker than both cut-elimination and the subformula property this property is sufficient to ensure decidability of finitely axiomatised calculi. We introduce one-step Heyting algebras and establish a semantic criterion characterising calculi for intermediate logics with the bounded proof property and the finite model property in terms of one-step Heyting algebras. Finally, we show how this semantic criterion can be applied to a number of calculi for well-known intermediate logics such as LC, KC and BD_2 .
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Intermediate logics, hypersequent calculi, bounded proof property, finite model property, finite duality
Elenco autori:
N. Bezhanishvili, S. Ghilardi, F. Moellestrom Lauridsen
Autori di Ateneo:
GHILARDI SILVIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/464844
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/01 - Logica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0