Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Stone duality above dimension zero: Axiomatising the algebraic theory of C(X)

Articolo
Data di Pubblicazione:
2017
Citazione:
Stone duality above dimension zero: Axiomatising the algebraic theory of C(X) / V. Marra, L. Reggio. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 307(2017), pp. 253-287. [10.1016/j.aim.2016.11.012]
Abstract:
It has been known since the work of Duskin and Pelletier four decades ago that K^op, the opposite of the category of compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that K^op is equivalent to a possibly infinitary variety of algebras Δ in the sense of Słomiński and Linton. Isbell showed in 1982 that the Lawvere–Linton algebraic theory of Δ can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosický independently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of K^op. In particular, Δ is not a finitary variety – Isbell's result is best possible. The problem of axiomatising Δ by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of Δ.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Algebraic theories; Axiomatisability; Boolean algebras; C⁎-algebras; Compact Hausdorff spaces; Lattice-ordered Abelian groups; MV-algebras; Rings of continuous functions; Stone duality; Stone–Weierstrass Theorem
Elenco autori:
V. Marra, L. Reggio
Autori di Ateneo:
MARRA VINCENZO ( autore )
REGGIO LUCA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/460952
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/460952/747189/Marra_Reggio_Revised.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore MAT/01 - Logica Matematica

Settore MAT/02 - Algebra

Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0