Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

The effective equation method

Capitolo di libro
Data di Pubblicazione:
2016
Citazione:
The effective equation method / S. Kuksin, A. Maiocchi (LECTURE NOTES IN PHYSICS). - In: New Approaches to Nonlinear Waves / [a cura di] E. Tobisch. - [s.l] : Springer Verlag, 2016. - ISBN 978-3-319-20689-9. - pp. 21-41 [10.1007/978-3-319-20690-5_2]
Abstract:
In this chapter we present a general method of constructing the effective equation which describes the behavior of small-amplitude solutions for a nonlinear PDE in finite volume, provided that the linear part of the equation is a hamiltonian system with a pure imaginary discrete spectrum. The effective equation is obtained by retaining only the resonant terms of the nonlinearity (which may be hamiltonian, or may be not); the assertion that it describes the limiting behavior of smallamplitude solutions is a rigorous mathematical theorem. In particular, the method applies to the three- and four-wave systems. We demonstrate that different possible types of energy transport are covered by this method, depending on whether the set of resonances splits into finite clusters (this happens, e.g. in case of the Charney- Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the NLS equation if the space-dimension is at least two). For equations of the first type the energy transition to high frequencies does not hold, while for equations of the second type it may take place. Our method applies to various weakly nonlinear wave systems, appearing in plasma, meteorology and oceanography.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Physics and Astronomy (miscellaneous)
Elenco autori:
S. Kuksin, A. Maiocchi
Link alla scheda completa:
https://air.unimi.it/handle/2434/421694
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/421694/652053/ee_new.pdf
Titolo del libro:
New Approaches to Nonlinear Waves
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0