Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Modular p-adic L-functions attached to real quadratic fields and arithmetic applications

Articolo
Data di Pubblicazione:
2016
Citazione:
Modular p-adic L-functions attached to real quadratic fields and arithmetic applications / M. Greenberg, M.A. Seveso, S. Shahabi. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 721(2016), pp. 167-231. [10.1515/crelle-2014-0088]
Abstract:
Let f ∈ Sk0+2(Γ0(Np)) be a normalized N-new eigenform with p ∤ N and such that ap2 ≠ pk0+1 and ordp(ap) < k0 + 1. By Coleman's theory, there is a p-adic family of eigenforms whose weight k0 + 2 specialization is f. Let K be a real quadratic field and let ψ be an unramified character of Gal(K̅ /K). Under mild hypotheses on the discriminant of K and the factorization of N, we construct a p-adic L-function ℒ/K,ψ interpolating the central critical values of the Rankin L-functions associated to the base change to K of the specializations of in classical weight, twisted by ψ. When the character ψ is quadratic, ℒ/K,ψ factors into a product of two Mazur-Kitagawa p-adic L-functions. If, in addition, has p-new specialization in weight k0 + 2, then under natural parity hypotheses we may relate derivatives of each of the Mazur-Kitagawa factors of ℒ/K,ψ at k0 to Bloch–Kato logarithms of Heegner cycles. On the other hand the derivatives of our p-adic L-functions encodes the position of the so called Darmon cycles.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Stark-heegner points; darmon cycles; L-invariants; forms; rationality; conjecture; families; curves; values
Elenco autori:
M. Greenberg, M.A. Seveso, S. Shahabi
Autori di Ateneo:
SEVESO MARCO ADAMO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/386897
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/386897/593960/Modular%20p-adic%20L-functions%20attached%20to%20real%20quadratic%20fields%20and%20arithmetic%20applications.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/02 - Algebra

Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0