Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques

Articolo
Data di Pubblicazione:
2017
Citazione:
Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques / L. Squarcina, U. Castellani, M. Bellani, C. Perlini, A. Lasalvia, N. Dusi, C. Bonetto, D. Cristofalo, S. Tosato, G. Rambaldelli, F. Alessandrini, G. Zoccatelli, R. Pozzi Mucelli, D. Lamonaca, E. Ceccato, F. Pileggi, F. Mazzi, P. Santonastaso, M. Ruggeri, P. Brambilla. - In: NEUROIMAGE. - ISSN 1053-8119. - 145:special issue(2017 Jan), pp. 238-245. [10.1016/j.neuroimage.2015.12.007]
Abstract:
First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences. With this work, we wanted to take into account possible nuisance effects of age and gender differences across dataset, not correcting the data as a pre-processing step, but including the effect of nuisance covariates in the classification phase. To this aim, we developed a method which, based on multiple kernel learning (MKL), exploits the effect of these confounding variables with a subject-depending kernel weighting procedure. We applied this method to a dataset of cortical thickness obtained from structural magnetic resonance images (MRI) of 127 FEP patients and 127 healthy controls, who underwent either a 3Tesla (T) or a 1.5T MRI acquisition. We obtained good accuracies, notably better than those obtained with standard SVM or MKL methods, up to more than 80% for frontal and temporal areas. To our best knowledge, this is the largest classification study in FEP population, showing that fronto-temporal cortical thickness can be used as a potential marker to classify patients with psychosis.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Schizophrenia; Affective psychosis; Cortical thickness; MRI; Frontal; Temporal cortex
Elenco autori:
L. Squarcina, U. Castellani, M. Bellani, C. Perlini, A. Lasalvia, N. Dusi, C. Bonetto, D. Cristofalo, S. Tosato, G. Rambaldelli, F. Alessandrini, G. Zoccatelli, R. Pozzi Mucelli, D. Lamonaca, E. Ceccato, F. Pileggi, F. Mazzi, P. Santonastaso, M. Ruggeri, P. Brambilla
Autori di Ateneo:
BRAMBILLA PAOLO ( autore )
SQUARCINA LETIZIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/354722
Progetto:
Immune gene expression and white matter pathology in first manic patients beforeand after treatment. A multimodal imaging genetic study
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MED/25 - Psichiatria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0