Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Signal spectral analysis to characterize gland milk electrical conductivity in dairy goats

Articolo
Data di Pubblicazione:
2015
Citazione:
Signal spectral analysis to characterize gland milk electrical conductivity in dairy goats / M. Zaninelli, L. Rossi, A. Costa, F.M. Tangorra, A. Agazzi, G. Savoini. - In: ITALIAN JOURNAL OF ANIMAL SCIENCE. - ISSN 1594-4077. - 14:3(2015), pp. 3518.362-3518.367. [10.4081/ijas.2015.3518]
Abstract:
Intramammary infection affects quality and quantity of milk. Having as final target the improving of animal health' monitoring, this research studied the gland milk electrical conductivity (EC) signal in order to identify a possible parameter more representative of the EC variations that can be observed, during a milking, when not healthy (NH) glands are considered. Two foremilk gland samples, from 40 Saanen goats, were acquired for three weeks and lactation stages (LS:0-60 Days In Milking; 61-120 DIM; => 120 DIM), for a total amount of 1440 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define glands health status. In case of negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy; alternatively, when bacteriological analyses were positive or SCC higher than 1,000,000 cells/mL, for two or more consecutive days, glands were classified as NH. A spectral analysis, to calculate the frequency spectrum and the bandwidth length of the milk EC signal, was performed. To validate data acquired, A MIXED procedure was used considering the HS, LS and the LS x HS as explanatory variables of the statistical model. Results showed that spectral analysis allows characterizing the milk EC variations thorough the bandwidth length parameter. This parameter has a significant relationship with the gland health status and it provides more accurate information than other traits, like the statistical variance of the signal. Therefore, it could be useful to improve the performances of multivariate models/algorithms that detect dairy goat health status.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
electrical conductivity; spectral analysis; fast Fourier transform; mastitis; dairy goats
Elenco autori:
M. Zaninelli, L. Rossi, A. Costa, F.M. Tangorra, A. Agazzi, G. Savoini
Autori di Ateneo:
AGAZZI ALESSANDRO ( autore )
COSTA ANNAMARIA ( autore )
ROSSI LUCIANA ( autore )
SAVOINI GIOVANNI ( autore )
TANGORRA FRANCESCO MARIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/345391
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/345391/1902602/Signal%20Spectral%20Analysis%20to%20Characterize%20Gland%20Milk%20Electrical%20Conductivity%20in%20Dairy%20Goats.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore AGR/09 - Meccanica Agraria

Settore AGR/10 - Costruzioni Rurali e Territorio Agroforestale

Settore AGR/18 - Nutrizione e Alimentazione Animale
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0