Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On a diffuse interface model of tumor growth

Articolo
Data di Pubblicazione:
2015
Citazione:
On a diffuse interface model of tumor growth / S. Frigeri, M. Grasselli, E. Rocca. - In: EUROPEAN JOURNAL OF APPLIED MATHEMATICS. - ISSN 0956-7925. - 26:2(2015), pp. 215-243. [10.1017/S0956792514000436]
Abstract:
We consider a diffuse interface model of tumour growth proposed by A. Hawkins-Daruud et al. ((2013) J. Math. Biol. 67 1457-1485). This model consists of the Cahn-Hilliard equation for the tumour cell fraction phi nonlinearly coupled with a reaction-diffusion equation for psi, which represents the nutrient-rich extracellular water volume fraction. The coupling is expressed through a suitable proliferation function p(phi) multiplied by the differences of the chemical potentials for phi and psi The system is equipped with no-flux boundary conditions which give the conservation of the total mass, that is, the spatial average of phi + psi Here, we prove the existence of a weak solution to the associated Cauchy problem, provided that the potential F and p satisfy sufficiently general conditions. Then we show that the weak solution is unique and continuously depends on the initial data, provided that p satisfies slightly stronger growth restrictions. Also, we demonstrate the existence of a strong solution and that any weak solution regularizes in finite time. Finally, we prove the existence of the global attractor in a phase space characterized by an a priori bounded energy.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
diffuse interface; tumour growth; Cahn-Hilliard equations; reaction-diffusion equations; weak solutions; well-posedness; global attractors
Elenco autori:
S. Frigeri, M. Grasselli, E. Rocca
Link alla scheda completa:
https://air.unimi.it/handle/2434/345121
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0