Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On local solvability for complex coefficient differential operators on the Heisenberg group

Articolo
Data di Pubblicazione:
1999
Citazione:
On local solvability for complex coefficient differential operators on the Heisenberg group / D. Müller, M.M. Peloso, F. Ricci. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 513(1999), pp. 181-234.
Abstract:
We discuss the problem of solvability for some classes of complex coefficient second order left-invariant operators on the Heisenberg group ℍn. We give several examples of operators that are not locally solvable for all choices of certain parameters, even if one allows the addition of lower order terms, in some cases also non-invariant ones. This is in striking contrast with the phenomenona known so far in the theory of local solvability of invariant second-order differential operators on nilpotent Lie groups. In order to disprove local solvability we use two different technical tools. The first one is a criterion by Hormander [Ho1]. The second one is an extension of a criterion for local non-solvability in [CR]. This extension, which is of interest in its own right, allows us to deal with non-homogeneous invariant differential operators. Our analysis of the differential operators is based on the classification of normal forms for involutive complex Hamiltonians under the action of the real symplectic group.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
nilpotent Lie-groups; example
Elenco autori:
D. Müller, M.M. Peloso, F. Ricci
Autori di Ateneo:
PELOSO MARCO MARIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/341218
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0