Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Large Solutions for Fractional Laplacian Operators

Tesi di Dottorato
Data di Pubblicazione:
2015
Citazione:
Large Solutions for Fractional Laplacian Operators / N. Abatangelo ; tutor: E. Valdinoci; coordinatore: L. van Geemen. DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES", 2015 Sep 28. 28. ciclo, Anno Accademico 2015. [10.13130/abatangelo-nicola_phd2015-09-28].
Abstract:
The thesis studies linear and semilinear Dirichlet problems driven by different fractional Laplacians. The boundary data can be smooth functions or also Radon measures. The goal is to classify the solutions which have a singularity on the boundary of the prescribed domain. We first remark the existence of a large class of harmonic functions with a boundary blow-up and we characterize them in terms of a new notion of degenerate boundary trace. Via some integration by parts formula, we then provide a weak theory of Stampacchia's sort to extend the linear theory to a setting including these functions: we study the classical questions of existence, uniqueness, continuous dependence on the data, regularity and asymptotic behaviour at the boundary. Afterwards we develop the theory of semilinear problems, by adapting and generalizing some sub- and supersolution methods. This allows us to build the fractional counterpart of large solutions in the elliptic PDE theory of nonlinear equations, giving sufficient conditions for the existence. The thesis is concluded with the definition and the study of a notion of nonlocal directional curvatures.
Tipologia IRIS:
Tesi di dottorato
Keywords:
fractional Laplacian; nonlocal operators; large solutions; L1 weak solutions; nonlinear elliptic equations; Dirichlet problem; boundary singularity; nonlocal curvatures
Elenco autori:
N. Abatangelo
Link alla scheda completa:
https://air.unimi.it/handle/2434/320258
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/320258/447261/phd_unimi_R10392.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0