Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Harnack's inequality and Hölder continuity for weak solutions of degenerate quasilinear equations with rough coefficients

Articolo
Data di Pubblicazione:
2015
Citazione:
Harnack's inequality and Hölder continuity for weak solutions of degenerate quasilinear equations with rough coefficients / D.D. Monticelli, S. Rodney, R.L. Wheeden. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 126(2015), pp. 69-114. [10.1016/j.na.2015.05.029]
Abstract:
We continue to study regularity results for weak solutions of the large class of second order degenerate quasilinear equations of the form div(A(x,u,∇;u))=B(x,u,∇;u)for x ∈Ω as considered in our paper Monticelli etal. (2012). There we proved only local boundedness of weak solutions. Here we derive a version of Harnack's inequality as well as local Hölder continuity for weak solutions. The possible degeneracy of an equation in the class is expressed in terms of a nonnegative definite quadratic form associated with its principal part. No smoothness is required of either the quadratic form or the coefficients of the equation. Our results extend ones obtained by J. Serrin (1964) and N. Trudinger (1967) for quasilinear equations, as well as ones for subelliptic linear equations obtained in Sawyer and Wheeden (2006, 2010).
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Degenerate elliptic partial differential equations; Degenerate quadratic forms; Harnack's inequality; Hölder continuity; Moser method; Quasilinear equations; Regularity; Weak solutions; Analysis; Applied Mathematics
Elenco autori:
D.D. Monticelli, S. Rodney, R.L. Wheeden
Link alla scheda completa:
https://air.unimi.it/handle/2434/293376
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0