Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

De Vries powers: a generalization of Boolean powers for compact Hausdorff spaces

Articolo
Data di Pubblicazione:
2015
Citazione:
De Vries powers: a generalization of Boolean powers for compact Hausdorff spaces / G. Bezhanishvili, V. Marra, P.J. Morandi, B. Olberding. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 219:9(2015), pp. 3958-3991.
Abstract:
We generalize the Boolean power construction to the setting of compact Hausdorff spaces. This is done by replacing Boolean algebras with de Vries algebras (complete Boolean algebras enriched with proximity) and Stone duality with de Vries duality. For a compact Hausdorff space X and a totally ordered algebra A, we introduce the concept of a finitely valued normal function f:X→A. We show that the operations of A lift to the set FN(X,A) of all finitely valued normal functions, and that there is a canonical proximity relation ≺ on FN(X,A). This gives rise to the de Vries power construction, which when restricted to Stone spaces, yields the Boolean power construction.We prove that de Vries powers of a totally ordered integral domain A are axiomatized as proximity Baer Specker A-algebras; that is, the pairs (S,≺), where S is a torsion-free A-algebra generated by its idempotents which is a Baer ring, and ≺ is a proximity relation on S. We introduce the category of proximity Baer Specker A-algebras and proximity morphisms between them, and prove that this category is dually equivalent to the category of compact Hausdorff spaces and continuous maps. This provides an analogue of de Vries duality for proximity Baer Specker A-algebras.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
algebras; frames
Elenco autori:
G. Bezhanishvili, V. Marra, P.J. Morandi, B. Olberding
Autori di Ateneo:
MARRA VINCENZO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/265399
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/01 - Logica Matematica

Settore MAT/02 - Algebra
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0