Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Mathematical programming bounds for large-scale unit commitment problems in medium-term energy system simulations

Contributo in Atti di convegno
Data di Pubblicazione:
2014
Citazione:
Mathematical programming bounds for large-scale unit commitment problems in medium-term energy system simulations / A. Ceselli, A. Gelmini, G. Righini, A. Taverna (OPEN ACCESS SERIES IN INFORMATICS). - In: 4th Student Conference on Operational Research, SCOR 2014Leibniz : Dagstuhl Publishing, 2014 Jul 31. - ISBN 9783939897675. - pp. 63-75 (( Intervento presentato al 4. convegno Student Conference on Operational Research (SCOR) tenutosi a Nottingham nel 2014 [10.4230/OASIcs.SCOR.2014.63].
Abstract:
We consider a large-scale unit commitment problem arising in medium-term simulation of energy networks, stemming from a joint project between the University of Milan and a major energy research centre in Italy. Optimal plans must be computed for a set of thermal and hydroelectric power plants, located in one or more countries, over a time horizon spanning from a few months to one year, with a hour-by-hour resolution. We propose a mixed-integer linear programming model for the problem. Since the complexity of this unit commitment problem and the size of real-world instances make it impractical to directly optimise this model using general purpose solvers, we devise ad-hoc heuristics and relaxations to obtain approximated solutions and quality estimations. We exploit an incremental approach: at first, a linear relaxation of an aggregated model is solved. Then, the model is disaggregated and the full linear relaxation is computed. Finally, a tighter linear relaxation of an extended formulation is obtained using column generation. At each stage, matheuristics are run to obtain good integer solutions. Experimental tests on real-world data reveal that accurate results can be obtained by our framework in affordable time, making it suitable for efficient scenario simulations.© Alberto Ceselli, Alberto Gelmini, Giovanni Gighini, and Andrea Taverna;.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Mathematical programming; Power systems; Unit commitment; Geography, Planning and Development; Modeling and Simulation
Elenco autori:
A. Ceselli, A. Gelmini, G. Righini, A. Taverna
Autori di Ateneo:
CESELLI ALBERTO ( autore )
RIGHINI GIOVANNI ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/263974
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/263974/370760/7.pdf
Titolo del libro:
4th Student Conference on Operational Research, SCOR 2014
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/09 - Ricerca Operativa
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0