Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A signal decomposition approach to morphological modeling of P-wave

Contributo in Atti di convegno
Data di Pubblicazione:
2014
Citazione:
A signal decomposition approach to morphological modeling of P-wave / A. Kheirati Roonizi, R. Sassi - In: Computing in Cardiology Conference (CinC), 2014[s.l] : IEEE, 2014 Sep. - ISBN 9781479943463. - pp. 341-344 (( Intervento presentato al 41. convegno CinC tenutosi a Cambridge nel 2014.
Abstract:
Morphological modelling of electrocardiographical P-waves could simplify the detection of signals' morphological features employed in risk stratification. We compared four different approaches, based on signal decomposition, for morphological modeling of signal-averaged P waves. The functional models included: trigonometric, Bézier, B-spline, and Gaussian basis functions. The comparison between models was performed at a common fixed number of parameters (ranging between C=3 to 21). The performances of the approximations were evaluated using compression efficiency measures, like the percentage of root-mean-square differences (PRD). Nonlinear iterative parameter identification was employed for Gaussian models, while the parameters of the other basis functions were calculated through closed formulas. We tested the effectiveness of the several methods on the PhysioNet PTB diagnostic ECG database (561 subjects, 10 s each, 12 leads). Trigonometric and B-spline models proved to be the most effective in following the details of the morphology (PRD: 0.51% ± 0.62% and 0.99% ± 0.96%, respectively, on lead VI at C=21), possibly as they form an orthogonal basis for the specific signal. This property is not shared by Bezier curves and Gaussian basis functions (PRD: 2.47% ± 2.17% and 3.57% ± 6.83%).
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Cardiology; Functions; Gaussian distribution; Iterative methods; Risk assessment; Seismic waves; Signal distortion; Compression efficiency; Gaussian basis functions; Morphological features; Morphological model; Morphological modelling; Risk stratification; Root mean square differences; Signal decomposition
Elenco autori:
A. Kheirati Roonizi, R. Sassi
Autori di Ateneo:
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/263630
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/263630/526305/0341.pdf
Titolo del libro:
Computing in Cardiology Conference (CinC), 2014
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0