Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Theta-point polymers in the plane and Schramm-Loewner evolution

Articolo
Data di Pubblicazione:
2013
Citazione:
Theta-point polymers in the plane and Schramm-Loewner evolution / M. Gherardi. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 88:3(2013), pp. 032128.-032128.1.
Abstract:
We study the connection between polymers at the θ temperature on the lattice and Schramm-Loewner chains with constant step length in the continuum. The second of these realize a useful algorithm for the exact sampling of tricritical polymers, where finite-chain effects are excluded. The driving function computed from the lattice model via a radial implementation of the zipper method is shown to converge to Brownian motion of diffusivity κ=6 for large times. The distribution function of an internal portion of walk is well approximated by that obtained from Schramm-Loewner chains. The exponent of the correlation length ν and the leading correction-to-scaling exponent Δ1 measured in the continuum are compatible with ν=4/7 (predicted for the θ point) and Δ1=72/91 (predicted for percolation). Finally, we compute the shape factor and the asphericity of the chains, finding surprising accord with the θ-point end-to-end values.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Condensed Matter Physics; Statistical and Nonlinear Physics; Statistics and Probability
Elenco autori:
M. Gherardi
Autori di Ateneo:
GHERARDI MARCO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/257238
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/257238/354231/1306.4993v2.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0