Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the dirichlet problem of mixed type for lower hybrid waves in axisymmetric cold plasmas

Articolo
Data di Pubblicazione:
2015
Citazione:
On the dirichlet problem of mixed type for lower hybrid waves in axisymmetric cold plasmas / D. Lupo, D.D. Monticelli, K.R. Payne. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 217:1(2015 Jul), pp. 37-69.
Abstract:
For a class of linear second order partial differential equations of mixed elliptic-hyperbolic type, which includes a well known model for analyzing possible heating in axisymmetric cold plasmas, we give results on the weak well-posedness of the Dirichlet problem and show that such solutions are characterized by a variational principle. The weak solutions are shown to be saddle points of natural functionals suggested by the divergence form of the PDEs. Moreover, the natural domains of the functionals are the weighted Sobolev spaces to which the solutions belong. In addition, all critical levels will be characterized in terms of global extrema of the functionals restricted to suitable infinite dimensional linear subspaces. These subspaces are defined in terms of a robust spectral theory with weights which is associated to the linear operator and is developed herein. Similar characterizations for the weighted eigenvalue problem and nonlinear variants will also be given. Finally, topological methods are employed to obtain existence results for nonlinear problems including perturbations in the gradient which are then applied to the well-posedness of the linear problem with lower order terms.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
mixed type PDE; spectral theory; variational methods; cold plasma model
Elenco autori:
D. Lupo, D.D. Monticelli, K.R. Payne
Autori di Ateneo:
PAYNE KEVIN RAY ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/253984
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/253984/348410/LMP_ARMA_final.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0