Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Equivalent Moser type inequalities in R^2 and the zero mass case

Articolo
Data di Pubblicazione:
2014
Citazione:
Equivalent Moser type inequalities in R^2 and the zero mass case / D. Cassani, F. Sani, C. Tarsi. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 267:11(2014), pp. 4236-4263. [10.1016/j.jfa.2014.09.022]
Abstract:
We first investigate concentration and vanishing phenomena concerning Moser type inequalities in the whole plane which involve complete and reduced Sobolev norms. In particular we show that the critical Ruf inequality is equivalent to an improved version of the subcritical Adachi-Tanaka inequality which we prove to be attained. Then, we consider smooth compactly supported functions with respect to the Dirichlet norm parallel to Delta .parallel to(2), and we prove an optimal Lorentz-Zygmund type inequality with explicit extremals and from which can be derived classical inequalities in H-1(R-2) such as the Adachi-Tanaka inequality and a version of Ruf's inequality.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Trudinger-Moser inequalities; Unbounded domains; Critical growth; Lorentz-Zygmund spaces; adams-type inequalities; Lorentz-Sobolev spaces; Klein-Gordon equation; R-N; unbounded-domains; trudinger inequalities; boundary-conditions; critical growth; ground-state; existence
Elenco autori:
D. Cassani, F. Sani, C. Tarsi
Autori di Ateneo:
TARSI CRISTINA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/251039
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0