Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Kato's Euler system and rational points on elliptic curves I : A p-adic Beilinson formula

Articolo
Data di Pubblicazione:
2013
Citazione:
Kato's Euler system and rational points on elliptic curves I : A p-adic Beilinson formula / M. Bertolini, H. Darmon. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - 199:1(2013), pp. 163-188. [10.1007/s11856-013-0047-2]
Abstract:
This article is the first in a series devoted to Kato's Euler system arising from p-adic families of Beilinson elements in the K-theory of modular curves. It proves a p-adic Beilinson formula relating the syntomic regulator (in the sense of Coleman-de Shalit and Besser) of certain distinguished elements in the K-theory of modular curves to the special values at integer points a parts per thousand yen 2 of the Mazur-Swinnerton-Dyer p-adic L-function attached to cusp forms of weight 2. When combined with the explicit relation between syntomic regulators and p-adic ,tale cohomology, this leads to an alternate proof of the main results of [Br2] and [Ge] which is independent of Kato's explicit reciprocity law.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
syntomic regulators; swinnerton-dyer; special values; zeta-functions; modular-forms; series; birch
Elenco autori:
M. Bertolini, H. Darmon
Link alla scheda completa:
https://air.unimi.it/handle/2434/249520
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0