Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Simple and collective twisted symmetries

Articolo
Data di Pubblicazione:
2014
Citazione:
Simple and collective twisted symmetries / G. Gaeta. - In: JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS. - ISSN 1402-9251. - 21:4(2014), pp. 593-627.
Abstract:
After the introduction of λ -symmetries by Muriel and Romero, several other types of so called “twisted symmetries” have been considered in the literature (their name refers to the fact they are defined through a deformation of the familiar prolongation operation); they are as useful as standard symmetries for what concerns symmetry reduction of ODEs or determination of special (invariant) solutions for PDEs and have thus attracted attention. The geometrical relation of twisted symmetries to standard ones has already been noted: for some type of twisted symmetries (in particular, λ and µ-symmetries), this amounts to a certain kind of gauge transformation. In a previous review paper [23] we have surveyed the first part of the developments of this theory; in the present paper we review recent developments. In particular, we provide a unifying geometrical description of the different types of twisted symmetries; this is based on the classical Frobenius reduction applied to distribution generated by Lie-point (local) symmetries.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Differential equations; Symmetry
Elenco autori:
G. Gaeta
Autori di Ateneo:
GAETA GIUSEPPE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/245427
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0