Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

RUMIN'S COMPLEX AND INTRINSIC GRAPHS IN CARNOT GROUPS

Tesi di Dottorato
Data di Pubblicazione:
2014
Citazione:
RUMIN'S COMPLEX AND INTRINSIC GRAPHS IN CARNOT GROUPS / M. Marchi ; tutor: M. M. Peloso, B. Franchi ; coordinatore: L. van Geemen. Università degli Studi di Milano, 2014 Dec 04. 27. ciclo, Anno Accademico 2014. [10.13130/marchi-marco_phd2014-12-04].
Abstract:
This thesis is concerned with some aspects of geometric analysis on Carnot groups. In the first chapter, we study differential forms and Rumin's complex on Carnot groups. In particular, we undertake the analysis of Rumin's Laplacian $\Delta_R$ on the Heisenberg group. We obtain a decomposition of the space of Rumin's forms with $L^2$ coefficients into invariant subspaces and describe the action of $\Delta_R$ restricted to these subspaces up to unitary equivalence. We also obtain that this decomposition provide a $L^p$ decomposition of the space of Rumin's forms. In the second chapter, we study intrinsic Lipschitz graphs and intrinsic differentiable graphs within Carnot groups. Both seem to be the natural analogues inside Carnot groups of the corresponding Euclidean notions. In particular, we prove that one codimensional intrinsic Lipschitz graphs are sets with locally finite $\G$-perimeter. From this a Rademacher's type theorem for one codimensional graphs in a general class of groups is proved.
Tipologia IRIS:
Tesi di dottorato
Keywords:
Carnot groups ; Rumin complex ; Rumin Laplacian ; Heisenberg group ; intrinsic graphs ; intrinsic differentiability
Elenco autori:
M. Marchi
Link alla scheda completa:
https://air.unimi.it/handle/2434/246343
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/246343/334271/phd_unimi_R09499.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0