Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the degenerate hyperbolic Goursat problem for linear and nonlinear equations of Tricomi type

Articolo
Data di Pubblicazione:
2014
Citazione:
On the degenerate hyperbolic Goursat problem for linear and nonlinear equations of Tricomi type / D. Lupo, K.R. Payne, N.I. Popivanov. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 108(2014 Oct), pp. 29-56.
Abstract:
For linear and semilinear equations of Tricomi type, existence, uniqueness and qualitative properties of weak solutions to the degenerate hyperbolic Goursat problem on characteristic triangles will be established. For the linear problem, a robust L2-based theory will be developed, including well-posedness, elements of a spectral theory, partial regularity results and maximum and comparison principles. For the nonlinear problem, existence of weak solutions with nonlinearities of unlimited polynomial growth at infinity will be proven by combining standard topological methods of nonlinear analysis with the linear theory developed here. For homogeneous supercritical nonlinearities, the uniqueness of the trivial solution in the class of weak solutions will be established by combining suitable Pohozaev-type identities with well tailored mollifying procedures. For the linear problem, the weak existence theory presented here will also be connected to known explicit representation formulas for sufficiently regular solutions with the aid of the partial regularity results. For the nonlinear problem, the question what constitutes critical growth for the problem will be clarified and differences with equations of mixed elliptic-hyperbolic type will be exhibited.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Degenerate hyperbolic equations ; generalized solutions ; integral representation of solutions ; spectral theory ; maximum and comparison principles ; topological methods of nonlinear analysis ; critical exponents
Elenco autori:
D. Lupo, K.R. Payne, N.I. Popivanov
Autori di Ateneo:
PAYNE KEVIN RAY ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/236280
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/236280/315717/NA_10241.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0