Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Detecting expert’s eye using a multiple-kernel Relevance Vector Machine

Articolo
Data di Pubblicazione:
2014
Citazione:
Detecting expert’s eye using a multiple-kernel Relevance Vector Machine / G. Boccignone, M. Ferraro, S. Crespi, C. Robino, C. de' Sperati. - In: JOURNAL OF EYE MOVEMENT RESEARCH. - ISSN 1995-8692. - 7:2(2014), pp. 3.1-3.15.
Abstract:
Decoding mental states from the pattern of neural activity or overt behavior is an intensely pursued goal. Here we applied machine learning to detect expertise from the oculomotor behavior of novice and expert billiard players during free viewing of a filmed billiard match with no specific task, and in a dynamic trajectory prediction task involving ad-hoc, occluded billiard shots. We have adopted a ground framework for feature space fusion and a Bayesian sparse classifier, namely, a Relevance Vector Machine. By testing different combinations of simple oculomotor features (gaze shifts amplitude and direction, and fixation duration), we could classify on an individual basis which group - novice or expert - the observers belonged to with an accuracy of 82% and 87%, respectively for the match and the shots. These results provide evidence that, at least in the particular domain of billiard sport, a signature of expertise is hidden in very basic aspects of oculomotor behavior, and that expertise can be detected at the individual level both with ad-hoc testing conditions and under naturalistic conditions - and suitable data mining. Our procedure paves the way for the development of a test for the “expert’s eye”, and promotes the use of eye movements as an additional signal source in Brain-Computer-Interface (BCI) systems.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Billiards; Expertise; Eye movements; Feature fusion; Machine learning; Mind reading; Relevance vector machine
Elenco autori:
G. Boccignone, M. Ferraro, S. Crespi, C. Robino, C. de' Sperati
Autori di Ateneo:
BOCCIGNONE GIUSEPPE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/233365
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/233365/309900/boccignone_et_al_jemr_2014_final.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0