Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

$\mathcal L$-invariants and Darmon cycles attached to modular forms

Articolo
Data di Pubblicazione:
2012
Citazione:
$\mathcal L$-invariants and Darmon cycles attached to modular forms / V. Rotger, M.A. Seveso. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 14:6(2012), pp. 1955-1999.
Abstract:
Let f be a modular eigenform of even weight k≥2 and new at a prime p dividing exactly the level with respect to an indefinite quaternion algebra. The theory of Fontaine-Mazur allows to attach to f a monodromy module D_FM(f) and an L-invariant L_FM(f). The first goal of this paper is building a suitable p-adic integration theory that allows us to construct a new monodromy module D(f) and L-invariant L(f), in the spirit of Darmon. The two monodromy modules are isomorphic, and in particular the two L-invariants are equal. Let K be a real quadratic field and assume the sign of the functional equation of the L-series of f over K is −1 . The Bloch-Beilinson conjectures suggest that there should be a supply of elements in the Selmer group of the motive attached to f over the tower of narrow ring class fields of K. Generalizing work of Darmon for k=2, we give a construction of local cohomology classes which we expect to arise from global classes and satisfy an explicit reciprocity law, accounting for the above prediction.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Darmon points, L-invariants, Shimura curves, quaternion algebras, p-adic integration.
Elenco autori:
V. Rotger, M.A. Seveso
Autori di Ateneo:
SEVESO MARCO ADAMO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/229758
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/02 - Algebra

Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0