Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

MV-algebras freely generated by finite Kleene algebras

Articolo
Data di Pubblicazione:
2013
Citazione:
MV-algebras freely generated by finite Kleene algebras / S. Aguzzoli, L.M. Cabrer, V. Marra. - In: ALGEBRA UNIVERSALIS. - ISSN 0002-5240. - 70:3(2013), pp. 245-270.
Abstract:
If V and W are varieties of algebras such that any V -algebra A has a reduct U(A) in W , there is a forgetful functor U:V→W that acts by A↦U(A) on objects, and identically on homomorphisms. This functor U always has a left adjoint F:W→V by general considerations. One calls F(B) the V -algebra freely generated by the W -algebra B. Two problems arise naturally in this broad setting. The description problem is to describe the structure of the V -algebra F(B) as explicitly as possible in terms of the structure of the W -algebra B. The recognition problem is to find conditions on the structure of a given V -algebra A that are necessary and sufficient for the existence of a W -algebra B such that F(B)≅A . Building on and extending previous work on MV-algebras freely generated by finite distributive lattices, in this paper we provide solutions to the description and recognition problems in case V is the variety of MV-algebras, W is the variety of Kleene algebras, and B is finitely generated–equivalently, finite. The proofs rely heavily on the Davey–Werner natural duality for Kleene algebras, on the representation of finitely presented MV-algebras by compact rational polyhedra, and on the theory of bases of MV-algebras.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
S. Aguzzoli, L.M. Cabrer, V. Marra
Autori di Ateneo:
AGUZZOLI STEFANO ( autore )
MARRA VINCENZO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/227055
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore INF/01 - Informatica

Settore MAT/01 - Logica Matematica

Settore MAT/02 - Algebra
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0