Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On differentiability of convex operators

Articolo
Data di Pubblicazione:
2013
Citazione:
On differentiability of convex operators / L. Vesely, L. Zajicek. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 402:1(2013), pp. 12-22.
Abstract:
The main known results on differentiability of continuous convex operators ff from a Banach space XX to an ordered Banach space YY are due to J.M. Borwein and N.K. Kirov. Our aim is to prove some “supergeneric” results, i.e., to show that, sometimes, the set of Gâteaux or Fréchet nondifferentiability points is not only a first-category set, but also smaller in a stronger sense. For example, we prove that if YY is countably Daniell and the space L(X,Y)L(X,Y) of bounded linear operators is separable, then each continuous convex operator f:X→Yf:X→Y is Fréchet differentiable except for a Γ-null angle-small set. Some applications of such supergeneric results are shown.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Ordered normed spaces ; Banach lattices ; Convex operators ; Fréchet differentiability ; Gâteaux differentiability
Elenco autori:
L. Vesely, L. Zajicek
Autori di Ateneo:
VESELY LIBOR ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/222281
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0