Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Keller-Osserman type conditions for differential inequalities with gradient terms on the Heisenberg group

Articolo
Data di Pubblicazione:
2011
Citazione:
Keller-Osserman type conditions for differential inequalities with gradient terms on the Heisenberg group / M. Magliaro, L. Mari, P. Mastrolia, M. Rigoli. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 250:6(2011), pp. 2643-2670. [10.1016/j.jde.2011.01.006]
Abstract:
We study the qualitative behavior of non-negative entire solutions of differential inequalities with gradient terms on the Heisenberg group. We focus on two classes of inequalities: Δφu≥f(u)l(|∇u|) and Δφu≥f(u)−h(u)g(|∇u|), where f,l,h,g are non-negative continuous functions satisfying certain monotonicity properties. The operator Δφ, called the φ-Laplacian, generalizes the p-Laplace operator considered by various authors in this setting. We prove some Liouville theorems introducing two new Keller-Osserman type conditions, both extending the classical one which appeared long ago in the study of the prototype differential inequality Δu≥f(u) in Rm. We show sharpness of our conditions when we specialize to the p-Laplacian. While proving these results we obtain a strong maximum principle for Δφ which, to the best of our knowledge, seems to be new. Our results continue to hold, with the obvious minor modifications, also for Euclidean space.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Differential inequalities; Gradient term; Heisenberg group; Keller-Osserman
Elenco autori:
M. Magliaro, L. Mari, P. Mastrolia, M. Rigoli
Autori di Ateneo:
MARI LUCIANO ( autore )
MASTROLIA PAOLO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/219375
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0