Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Exponentially long stability times for a nonlinear lattice in the thermodynamic limit

Articolo
Data di Pubblicazione:
2012
Citazione:
Exponentially long stability times for a nonlinear lattice in the thermodynamic limit / A. Carati, A. Maiocchi. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 314:1(2012 Aug), pp. 129-161.
Abstract:
In this paper, we construct an adiabatic invariant for a large 1-d lattice of particles, which is the so called Klein Gordon lattice. The time evolution of such a quantity is bounded by a stretched exponential as the perturbation parameters tend to zero. At variance with the results available in the literature, our result holds uniformly in the thermodynamic limit. The proof consists of two steps: first, one uses techniques of Hamiltonian perturbation theory to construct a formal adiabatic invariant; second, one uses probabilistic methods to show that, with large probability, the adiabatic invariant is approximately constant. As a corollary, we can give a bound from below to the relaxation time for the considered system, through estimates on the autocorrelation of the adiabatic invariant.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Hamiltonian system; equilibrium point; oscillators; integrals
Elenco autori:
A. Carati, A. Maiocchi
Autori di Ateneo:
CARATI ANDREA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/214765
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0